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Steady, two-dimensional and symmetric natural convection flow over para-
bolic bodies are investigated numerically. The full Navier–Stokes and energy
equations were solved using the finite element technique. Solutions for the
velocity and temperature distributions are obtained for different values of the
flow parameters. In addition, the local and average Nusselt number distri-
butions are obtained and presented. For all cases considered, the following
parameters are studied: nose radius of curvature of the parabolic body, Gras-
hof number, and Prandtl number. It was found that as the nose radius of
curvature of the parabolic body is increased, the local and average values
of the Nusselt number are decreased. On the other hand, an increase in the
Grashof or Prandtl number is found to increase the local and average Nus-
selt number.
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1. INTRODUCTION

The importance of flow over parabolic bodies comes from the fact that
the flow over a semi-infinite flat plate is fundamental in engineering appli-
cations. However, flat plates considered by most researchers in the litera-
ture are infinitesimally thick (e.g., see Davis [1]). In real-life applications,
all bodies have finite thickness, including the flat plate. Thus, the flow over
a parabolic body represents the flow over a flat plate more closely, with
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the effect of a blunt leading edge being implicitly considered if the lead-
ing edge region is not excluded from the solution.

Davis [1] has studied the laminar flow past a semi-infinite flat plate.
In his study, Davis used a series truncation method in which the stream
function is locally expanded in a power series in the x-coordinate. Van
De Vooren and Dijkstra [2] have investigated the laminar incompressible
flow past a semi-infinite flat plate, and a numerical solution to the Navier–
Stokes (N–S) equations has been reached.

The flow over a parabolic body is the natural extension of the flow
over a flat plate when parabolic coordinates are used. The N–S equations
for laminar incompressible flow past a parabolic cylinder were numerically
solved by Botta et al. [3]. The same flow problem that is investigated by
Davis [1] was treated also by Dennis and Walsh [4] using the finite differ-
ence technique. The stream function and vorticity variables are used as the
dependent variables. In their study, they were not able to get a solution for
a Reynolds number smaller than 0.25. This was because of the singular-
ity problem; however, their results were in good agreement with those of
Davis [1]. There was a small but significant difference between their results
and those of the second-order boundary layer approximation, especially in
the skin friction. Davis [5] has numerically solved the laminar incompress-
ible flow past a parabolic cylinder for a wide range of Reynolds numbers.
All solutions were found by using an alternating direction implicit (ADI)
method. Davis paid careful attention on extracting the singularities from
the problem in the limit as the Reynolds number goes to zero (i.e., infini-
tesimal flat-plate solution). In addition, Haddad and Corke [6] have inves-
tigated the receptivity of the boundary layer over parabolic bodies to a
free-stream acoustic wave. The flow over a parabolic body was one part
(the basic state) of the solution.

All past solutions of the flow over a parabolic body have considered
only the hydrodynamic part of the problem. The only exception to this
is the numerical study carried out by Haddad et al. [7], in which the full
Navier–Stokes and forced convection energy equations in parabolic coor-
dinates with the stream function, vorticity and temperature as dependent
variables were solved. Results were presented for the pressure, velocity, and
temperature distributions in addition to the local and average skin friction
distributions. The effect of both the Reynolds number and Prandtl number
on the local and average Nusselt number was also presented. The obtained
solutions agreed very well with the previous solutions available in the lit-
erature.

The goal of this study is to extend our previous work reviewed above
to the case of natural convection flow over parabolic bodies. The effect
of the different flow parameters (e.g., nose radius of curvature, Prandtl
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number, etc.) will be investigated. Furthermore, Nusselt number distribu-
tions will be obtained, and all results relevant to the parabolic body will
be compared with the classical flat plate results in an attempt to under-
stand the effect of bluntness of the leading edge.

To the best of authors’ knowledge, there exist no experimental data
in the literature relevant to the flow over parabolic bodies, nor a theoret-
ical or numerical study which considers the natural convection flow over
parabolic bodies. This lack of knowledge in the literature, in addition to
the wide practical applications of the flow over finite thickness flat plates,
have motivated the present study.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

2.1. Governing Equations

A schematic diagram of the problem under consideration is shown in
Fig. 1. The surface of the parabolic body is generated based on the fol-
lowing equation:

x(y)= 1
2R

(
y2 −R2

)
, (1)

where R is recognized as the nose radius of curvature.
The full Navier–Stokes and energy equations for steady two-dimensional

laminar incompressible flow in the Cartesian coordinates take the form [7],
Continuity equation:

∂u∗

∂x∗ + ∂v∗

∂y∗ =0 (2)

x-momentum equation:

ρu∗ ∂u∗

∂x∗ +ρv∗ ∂u∗

∂y∗ =ρgx − ∂P ∗

∂x∗ +µ

[
∂2u∗

∂x∗2
+ ∂2u∗

∂y∗2

]
, (3)

where gx =−g.
y-momentum equation:

ρu∗ ∂v∗

∂x∗ +ρv∗ ∂v∗

∂y∗ =−∂P ∗

∂y∗ +µ

[
∂2v∗

∂x∗2
+ ∂2v∗

∂y∗2

]
(4)

Energy equation:

u∗ ∂T ∗

∂x∗ +v∗ ∂T ∗

∂y∗ =α

(
∂2T ∗

∂x∗2
+ ∂2T ∗

∂y∗2

)
. (5)



Numerical Simulation of Natural Convection Flow Over Parabolic Bodies 1593

X

x = 1

x2 = 0.333

x6 = 1

x3 = 0.500

x5 = 0.833

x4 = 0.667

wT

x1 = 0.167

Solution  
Domain

xo = 0.0

T

g

Y = 12  

Y

x =  –0.1667

∞

Fig. 1. Schematic diagram of physical problem.

It is assumed that there is no heat source/sink, that the thermophysical
properties are constant, and that the viscous dissipation is negligible. In
order to make the equations dimensionless, the following dimensionless
variables are introduced:

x = x∗

L
, y = y∗

L
, u= u∗

υ
/
L

, v = v∗

υ
/
L

θ = T ∗ −T ∗∞
T ∗

w −T ∗∞
, P = P ∗ −P ∗∞

ρυ2/L2

(6)

Substituting these variables back into Eqs. (2)–(5), and using the Bous-
sinesq approximation, leads to the following dimensionless set of equations:
Continuity equation :

∂u

∂x
+ ∂v

∂y
=0 (7)

x-momentum equation:

u
∂u

∂x
+v

∂u

∂y
=GrL θ + ∂2u

∂x2
+ ∂2u

∂y2
(8)
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y-momentum equation:

u
∂v

∂x
+v

∂v

∂y
= ∂2v

∂x2
+ ∂2v

∂y2
(9)

Energy equation :

u
∂θ

∂x
+v

∂θ

∂y
= 1

Pr

(
∂2θ

∂x2
+ ∂2θ

∂y2

)
, (10)

where Gr is the Grashof number and Pr is the Prantdl number.

2.2. Local and Average Nusselt Number

The local Nusselt number is defined as

Nux = hx∗

k
, (11)

where h is the convection heat transfer coefficient and is given by

h= −k(∂T ∗/∂y∗)w

�T ∗ , (12)

where �T ∗ =T ∗
w −T ∗∞

Thus, by making the variables dimensionless using Eq. (6),

Nux =−x

(
∂θ

∂y

)

w
. (13)

This equation indicates that the local Nusselt number is directly
proportional to the gradient of the local dimensionless temperature pro-
file at the wall. The average Nusselt number may then be calculated as
follows:

Nu= 1
L

L∫

0

Nux dx. (14)
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2.3. Boundary Conditions

Since the x-axis is an axis of symmetry (Fig. 1), only one half of the
flow domain will be considered. At the wall, the no-slip no-penetration
conditions (u = 0, v = 0) are applied, whereas the wall temperature was
considered constant (T = Tw). Away from the wall in the y-direction, the
ambient conditions are imposed. The above boundary conditions can be
summarized as follows:

– Wall boundary conditions (y =yw, xo <x <x6):

u=0, v =0, and θ =1.0. (15)

– Free-stream boundary conditions (y →∞):

u=0, v =0, and θ =0. (16)

– Symmetry boundary condition (y =0, x <xo):

v =0. (17)

In addition, the following boundary conditions are required to close the
computational domain:

– Inflow conditions at x =−0.1667 : θ =0. (18)

– Outflow conditions at x = x6: all velocity components have zero
gradients at the outflow

∂u/∂x = ∂v/∂x =0. (19)

3. NUMERICAL METHOD OF SOLUTION

The governing set of partial differential equations and boundary con-
ditions has been solved using the finite element technique. The numerical
algorithm follows the “SIMPLER” algorithm introduced by Patankar [8].
The numerical tests were performed using two different types of elements:
quadratic and cubic triangular elements. Here, it should be emphasized
that the accuracy of the solution was improved by using higher-order ele-
ments (i.e., triangular elements). The results were verified using a mesh
refinement approach in which the total number of node points is contin-
uously increased as long as the numerical solution is changing, and until
the numerical solution is invariant with any further increase in the total
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number of node points. This mesh refinement approach was repeated for
all cases considered. The results presented here were obtained using third-
order triangular elements, with a total number of elements and nodes of
508 and 1077, respectively. The resulting set of algebraic equations is non-
linear, and thus iterative methods are required. Picard’s method or some-
times called the successive substitution method (Anderson et al. [9]) was
used. In this method an initial estimate of the solution variables (u, v, θ )
are substituted in the governing equations. The equations are solved for
new values that are then used as the estimates for the next iteration.

The program will continue iteratively until the convergence criterion
is achieved. The convergence criterion is the level at which the specified
variable’s residual norm is reached. For each of the variables, there will be
an equation for each finite element node in the analysis model. A typical
algebraic equation for variable φ at node i can be written as

Aiiφi +
∑
j �=i

Aijφj =Sti , (20)

where Aij ’s are the algebraic coefficients resulting from discretizing the
advection and diffusion terms in the governing equations, and Sti ’s are the
discretized source terms.

The residual of this equation is defined as

Rφ i =Sti −Aiiφi −
∑
j �=i

Aijφj , (21)

where Rφ i is the nodal residual for φ at node i. Solutions were assumed
to converge when Rφ i ≤10−5 is satisfied for every dependent variable φ at
every node point i in the computational domain.

In order to slow down the changes made to the solution variables, an
under-relaxation technique was used. In this method, the new solution is
weighted by the old solution using the following formula:

φ =γφnew + (1−γ )φold. (22)

for most situations, the value γ =0.5 was the best choice.

4. RESULTS AND DISCUSSION

To validate our results, the solution for a nose radius r = 0
(i.e., zero-thickness flat plate) case is obtained. Also, the case for r = 0.01
(i.e., parabolic body) was considered to check the code capability under
forced-flow conditions. The results of these two cases are then compared
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with pertinent available results in the literature. Other cases of natural
convection flow for which r =0.001, 0.01, 0.1 are then considered to inves-
tigate the effect of the parameters of interest on the solution.

4.1. Validation of Results

When the nose radius of curvature takes the value zero, the parabolic
body becomes a zero-thickness flat plate. Results for the natural convec-
tion from a vertical flat plate are obtained and compared with the cor-
responding results documented in the literature to validate our results.
Figure 2 shows the obtained axial velocity distribution by the present
study and that presented by Schlichting [10]. Also, to verify the obtained
results of the parabolic body cases, our code is modified to solve the gov-
erning equations considered by Haddad et al. [7] for the forced convection
flow case. The local skin friction distribution along the body surface is
shown in Fig. 3 for two different values of the Reynolds number (note:
the Reynolds number is defined only for the forced convection flow case
and is required here only to compare our results with Haddad et al. [7]).
It is obvious from Figs. 2 and 3 that the results obtained by this study are
in excellent agreement with those previously documented in the literature.
This agreement has strengthened our confidence in the results and enabled
us to move forward to the desired flow cases in the present study.

4.2. Velocity Distributions

The local velocity profiles for the four different cases of the nose
radius of curvature under study are shown in Fig. 4. From this figure
it is obvious that as the nose radius of curvature of the parabolic body
(r) increases, the hydrodynamic boundary layer thickness increases. This
is due to the increased gradient of the streamlines close to the body sur-
face due to the increased body thickness with r, which then leads to an
increased velocity component in the wall normal direction and hence a
higher viscous diffusion rate. It is also noted that the peak of the velocity
profiles shifts slightly away from the wall as r increases. This may also be
attributed to the same mechanism explained above. Finally, it can be noted
that the increase in the local velocity is not uniform as the nose radius of
curvature (r) increases. This is more obvious near the leading edge region
(Fig. 4a) than farther downstream, and it indicates the nonlinear effect of
the nose radius of curvature on the hydrodynamics of the flow. A similar
trend will also be observed in the thermal part of the results.

The effect of the Grashof number (Grx) on the axial velocity can
be noted in the same figure discussed above. The change in the Grashof
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Fig. 2. Velocity distribution on a flat plate (r =0).

number (which can be due to the change in the location along the body
surface) affects the flow in a way such that as the Grashof number
increases (as the flow travels farther down stream from x1 to x4) the axial
velocity becomes relatively larger. This is due to the fact that the vis-
cous boundary layer thickness becomes thicker as the fluid particles travel
farther downstream; however, the continuity equation has to be satisfied
everywhere.

Based on Fig. 4, it is also clear that the effect of bluntness (finite
thickness leading edge) could be negligible only to some extent. In other
words, the results of the flow over a parabolic body with r = 0.001 (finite
thickness flat plate) are fairly close to the results when r = 0 (zero-thick-
ness flat plate). However, the results of the other cases deviate significantly
from the r =0 case. Thus, up to r =0.001, one may in general approximate
finite thickness plates by zero-thickness plates and the effect of bluntness
could then be considered negligible.
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Fig. 3. Local skin friction distribution on parabolic bodies— forced convection.

The effect of fluid type on the results is manifested by changing the
value of the Prandtl number. Figure 5 shows the effect of the Prandtl
number on the velocity distribution at x =x1 for a parabolic body of nose
radius of curvature r = 0.001. It can be seen that as the Prantdl num-
ber increases, the axial velocity decreases. This is reasonable based on our
knowledge that as Pr increases the flow becomes more viscous (i.e., the
fluid’s resistance to flow increases). Also, one may note that generally the
flow velocity is relatively negligible for cases with Pr ≥ 100.

4.3. Temperature Distributions

4.3.1. Effect of the Nose Radius of Curvature (r) and the Fluid Type (P r)

The dimensionless temperature profile is plotted for different values
of the nose radius of curvature (r) at two different locations on the body.
The results are shown in Fig. 6. It can be noted that as the nose radius
of curvature increases, the thermal boundary layer thickness increases.
This trend is present at all locations on the isothermal body, and this
may be explained as follows: as the nose radius of curvature increases,
the body becomes more blunt. This leads to an increased curvature in
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the streamlines, which in turn increases the transverse component of the
velocity vector. As a result, the flow penetrates farther in the wall nor-
mal direction and this leads to an increased thermal boundary layer thick-
ness. It can also be noted that for values of the nose radius of curvature
r ≤ 0.01, the temperature distributions are close to the flat-plate solution.
However, for r = 0.1 the distributions deviate clearly from the flat plate
case. This deviation is vanishing with downstream distance. This indicates
the importance of the leading edge region and confirms the fact that the
flow approaches asymptotically the flat-plate (Blasius) flow far downstream
(Davis [5]).

If the above results are interpreted in terms of the rate of heat
transfer, it can be noted that as the nose radius of curvature is increased,
the thermal boundary layer thickness will increase. This implies a lower
temperature gradient at the wall which leads to a decreased rate of heat
transfer at the surface. This result will be confirmed later by the Nusselt
number distributions.

The effect of the Prandtl number on the temperature profiles is shown
in Fig. 7. By inspecting Fig. 7, it should be noted that as the Prandtl num-
ber is increased the thermal boundary layer thickness is decreased. Conse-
quently, an increased rate of heat transfer is expected as Pr is increased.
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4.3.2. Effect of Nose Radius of Curvature and Prandtl Number on Local
and Average Nusselt Number Distributions

The local Nusselt number distribution along the body surface of
different parabolic bodies and for two values of the Prandtl number,
namely 0.71 (air) and 7.12 (water) is shown in Fig. 8. From this figure one
may note the following:

(a) The local Nusselt number is maximum at the leading edge of the
body and this, in part, can be attributed to the fact that in the
vicinity of the leading edge the flow is a localized accelerating
stagnation point flow (Davis [5]), and that is expected to enhance
the mixing action locally and thus the local heat transfer rate is
enhanced. Also, the local Nusselt number decreases asymptoti-
cally with downstream distance, as expected.

(b) The local Nusselt number decreases as the nose radius of cur-
vature of the parabolic body increases: this is because as the
nose radius of curvature of the parabolic body increases the ther-
mal boundary layer thickness increases. This will decrease the
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temperature gradient at the wall for a given driving temperature
difference (Tw −T∞) which in turn leads to a decreased value for
the local Nusselt number. On the other hand, the trend of the
local Nusselt number distribution over parabolic surfaces is sim-
ilar to that over a flat plate.

(c) It should be noted that as the Prandtl number increases, the local
Nusselt number (with all other conditions the same) increases.
This trend may be explained as follows: the Prandtl number is the
ratio of the viscous to thermal resistance, and as the Prandtl num-
ber increases the thermal resistance decreases, so the local Nus-
selt number will increase as stated above. The increase in the local
Nusselt number is expected to enhance the local heat transfer rate.

The average Nusselt number profiles are shown in Fig. 9. In this fig-
ure one can note that the average Nusselt number (which reflects the over-
all heat transfer rate) increases linearly as the product (PrGr) increases.
This is true for the flat plate and all parabolic bodies under consider-
ation, as well. This trend may be discussed as follows: The increase in
GrPr is related to the increase in one or both of Gr and Pr. The increase
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in Pr has been discussed above, while the increase in Gr will lead to an
increase in the buoyancy force. This, in turn, increases the driving force
and thus leads to a better heat transfer rate. Also, it should be noted
that as the nose radius of curvature of the parabolic body increases, the
average Nusselt number decreases (with all other boundary conditions the
same). Recall that an increase in the nose radius of curvature results in
a decrease in the local Nusselt number. Thus, it is expected that this
decrease will be reflected on the average Nusselt number. This result is
confirmed by Fig. 9.

In an attempt to correlate (Nu) to GrPr, the obtained results are
curve fitted using the least-squares principle (i.e., regression analysis). The
following results are obtained based on the data in Fig. 9:

1. Flat plate (r =0):

Nu=0.5529 (Gr Pr)0.2487 .

This relation is in excellent agreement with that available in the
literature (Schlichting [10]):

Nu=0.5555 (Gr Pr)1/4.
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2. Parabolic body (r �=0): using a similar form of the fitted equation
to the one above, the following results are obtained for the cases
when r �=0:

Nu=0.3819 (Gr Pr)0.2467 r =0.001

Nu=0.3649 (Gr Pr)0.244 r =0.01

Nu=0.3529 (Gr Pr)0.2403 r =0.1

These correlations provide accurate predictions of the Nusselt number for
design and research purposes.

5. CONCLUSIONS

The hydrodynamic and thermal characteristics for laminar natural
convection over parabolic bodies were investigated. A computer code
based on a finite element method was developed to solve the flow prob-
lem under consideration. Results for the parabolic body and the flat plate
(which is a special case of the parabolic body) are compared and dis-
cussed.

Some of the important conclusions that can be drawn from this study
are as follows:

(a) Our results for both the hydrodynamic and thermal parts of the
problem show excellent agreement with those available in the lit-
erature.

(b) For natural convection flow over a parabolic body, as the nose
radius of curvature (r) increases, the thermal and viscous bound-
ary layers become thicker and thus the local Nusselt number
decreases (i.e., a decreased rate of heat transfer). Also, the peak
of the velocity profiles shifts slightly away from the wall as r

increases.

(c) The effect of bluntness (finite thickness leading edge) could be
negligible only to some extent, that is, up to r =0.001, one may in
general approximate finite thickness plates by zero-thickness plates
and the effect of bluntness could then be considered negligible.

(d) As the Grashof number increases, the axial velocity becomes rela-
tively larger. On the other hand, as the Prandtl number increases,
the flow velocity decreases, while the heat transfer rate will be
enhanced.
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NOMENCLATURE

Aij algebraic coefficient
g acceleration of gravity
Grx local Grashof number (gβ�T x3/ν2)
h local convective heat transfer coefficient
k thermal conductivity of the fluid
L length of the parabolic body (x6)
Nux local Nusselt number (hx/k)
Nu average Nusselt number
Pr Prandtl number (ν/α)
R nose radius of curvature
r dimensionless nose radius of curvature (R/L)
Re Reynolds number based on the nose radius of curvature (u∞R/υ)
St source term
T temperature
u axial velocity component
v normal velocity component
x, y Cartesian coordinates

Greek Symbols

(ξ, η) body fitted (i.e., parabolic) coordinates (x = (ξ2 −η2)/2, y = ξη)

η modified wall normal coordinate, η= y
x

(
Grx

4

)1/4

µ dynamic viscosity
υ kinematic viscosity
ρ density
θ dimensionless temperature
γ under-relaxation coefficient
φ arbitrary dependent variable
α thermal diffusivity

Superscripts

∗ dimensional quantity
— average quantity
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